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AUTOMATED QUANTITATION OF NON-STEADY FLOW AND 
LUMEN AREA BASED ON TEMPORAL CORRELATION 

 
 Sang H. Lee, Noam Alperin 

Department of Radiology, University of Illinois at Chicago, Chicago, Illinois USA 
 
 

Abstract – A robust method for automated 
quantitation of nonsteady flow and lumen area is 
presented. The method utilizes temporal 
information to differentiate between pixels within 
the lumen and a background region. Cross 
correlation (CC) is applied to identify the pixels with 
temporal information similar to a reference 
obtained from a pixel within the lumen region.  The 
new method incorporates a computation of an 
optimal threshold; therefore, it provides an 
unbiased observer-independent quantitation.  We 
have conducted in vitro and in vivo experiments to 
evaluate the reproducibility and accuracy of the 
method. 
Keywords – nonsteady flow, volumetric flow 
quantitation, automated lumen segmentation. 
 

I. INTRODUCTION 

 
     Quantitation of blood flow provides important 
information in evaluation of cardiovascular diseases (1).   
Measurement of hemodynamic changes in renal artery 
has been used to study the clinical implications of renal 
artery stenosis (2).  Quantitation of cerebrospinal fluid 
(CSF) has become important in diagnosis of CSF 
related disorders such as pseudotumor cerebri 
(chronically elevated intracranial pressure (ICP)), and 
Chiari malformation (herniation of hindbrain into the 
spinal canal) (3,4).  Recently, noninvasive method to 
measure intracranial pressure from measurements of 
blood and CSF flow has been developed.  This method 
utilizes quantitation of arterial, venous and CSF flow to 
derive ICP and compliance (5).  
     A motion sensitive MRI technique, dynamic phase 
contrast, is becoming the gold standard method of 
quantifying volumetric flow rates (6). In this technique, 
magnetic field gradients are applied to generate phase 
shifts for moving spins. The resulted phase maps are 
proportional to the spins’ velocities (6).  Dynamic 
implementation of this technique enables imaging of 
non-steady flow during the cardiac cycle.  The total 
flow through the lumen can be calculated by integrating 
the pixel intensities within the lumen.  In order for this 
technique to be reliably applied to clinical cases, 
accurate and reproducible volumetric flow rate 
measurements are essential.  Manual identification of 
lumen boundary is still the most commonly used 

method.  However, due to its operator’s skill 
dependency, manual segmentation can be inconsistent 
and inaccurate.   
     Several automated methods have been proposed.  
Burkart et. al. (7) segmented lumen by thresholding the 
intensity of a single magnitude image.  Hu et. al. (8) 
used a region growing technique with intensity 
threshold to segment the entire vascular structure in 3 
dimensional MRI images of blood vessels.  Kozerke et. 
al. (9) used an active contour technique, which utilizes 
a deformable contour balancing two different energy 
fields, to find the most outer edge of the vessel lumen.  
Oyre et. al. (10) segmented lumen of vessel conducting 
laminar flow by fitting the velocity map within the 
lumen to three-dimensional paraboloid.  Baledent et. al. 
(11) proposed a method to segment lumens conducting 
Oscillatory flow such as CSF flow.  A Fourier 
Transform of the temporal dynamics of each pixel is 
calculated and pixels that the first harmonic is larger 
than DC value are selected. 
     While most methods utilize spatial information from 
a single image, the new method utilizes multiple images.  
Differences in temporal information between pixels 
located in the lumen and in the surrounding tissue are 
utilized as segmentation criteria.  The dynamic 
information of the lumen is sampled and used as a 
reference to search for a similar temporal behavior by 
comparing the velocity waveforms of the pixels around 
this region.  CC is applied to quantify the degree of 
similarity between a reference waveform and the 
waveforms obtained from the surrounding pixels.  The 
performance of this method was evaluated in vitro and 
in vivo experiments.   

 
II. METHODOLOGY 

 
     The automated procedure includes four steps: 
 

1) selecting a reference velocity waveform 
2) generating CC map 
3) computing optimal CC threshold  
4) tracking the edge of the segmented region 

 
Selecting reference velocity waveform 
 
     An example of a phase contrast MR velocity image 
of the arteries and veins in the neck is shown in Figure 
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1a. The location of a pixel that is used as a “reference 
waveform” is marked by the x.  Figure 1b shows the 
velocity waveform at that location.   
 
Generating CC map 
 
     The CC coefficient, as defined in equation 1, is used 
to quantify similarity between the reference waveform 
and waveforms obtained from other pixels in the image. 
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Pxy is the CC value at pixel location XY, R is the 
reference waveform, k is the time index of the time-
series images, and N is the total number of images in 
the time series.  A grayscale map proportional to the 
CC coefficient calculated for each pixel location is 
generated and is shown in figure 1C where higher pixel 
intensity represents higher CC value. 
 
Computing optimal CC threshold 
 
     A histogram of number of pixels with CC value 
above the threshold for different threshold values is 
generated.  An example of a typical histogram is shown 
in figure 1D. Such a histogram contains three regions:  

 
1) Region A – Rapid increase in the number of pixels 

as threshold decreases. The region corresponds to 
pixels within the lumen. 

2) Region B – Relatively small increase. This region 
corresponds to pixels that are located near the edge 
of the lumen and some in background region. 

3) Region C – A rapid increase.  Identified pixels are 
mainly located outside the lumen of interest. 

 
The optimal threshold CC value is selected at the point 
of transition from region B to region C. 
 
Tracking the edge of the segmented region 
 
     The boundary of the segmented pixels with CC 
value above threshold is identified by tracking the 
nearest neighbor pixel that is:  
1) above the threshold and  
2) neighboring with pixels that are below the 

threshold. 
An example of a lumen with edge traction applied is 
shown in figure 1E. 

 
 

 
FIGURE 1 

 

 
 
A)   Phase contrast image with location of the reference 

waveform. 
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B)   Reference waveform during one cardiac cycle. 

 
 

 
C)   Grayscale CC map. 
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D) CC threshold vs. # of pixels above threshold. 
 
 

 
E) Lumen with edge traction applied. 
 

 
 

EXPERIMENTS 
 
     A phantom experiment was performed using a 1.5 T 
MRI scanner (GE medical systems, Milwaukee). Three 
different flow setups were evaluated.  For flow setup 1, 
three repeated scans were performed with the following 
MRI parameters:  Velocity encoding (VENC) = 75cm/s, 
FOV = 20*20cm, TR/TE = 18/5msec.  Flow setup 2 
and 3 were repeated 8 and 5 times, respectively, and 
scanning was performed on a 3T scanner with the MRI 
parameters: VENC = 75cm/s, FOV = 16*16cm, and 
TR/TE = 18/6.3msec.  Averages and % standard 
deviations of each lumen’s flow rate and diameter were 
calculated. 
 
     To evaluate the performance of the method on 
patients’ data, 15 data sets, each includes 2 internal 
carotid arteries, 2 vertebral arteries, 2 jugular veins, and 
CSF flow at the level of C2, were analyzed by 5 
observers using both manual and automated 

segmentation.  Reproducibility was compared between 
the two segmentation techniques. 

 
III. RESULTS 

 
     Means and % standard deviations (%SD) of area, 
flow rate, and diameter for each in vitro lumen are 
listed on Table I.  Lumens 1, 2, and 3 have same lumen 
area and lumen 4 has a smaller area.  The %SD for each 
in vivo measurement done both manual and automated 
techniques is summarized in Table II. 

 
TABLE I 

IN VITRO:  Accuracy and Reproducibility 

 
Table I.  Independent measurements of true flow rate were 
not available.  True diameter of lumen 1,2,3 is 8 mm.  True diameter 
of lumen 4 is 6 mm.  (%SD = SD/mean*100)  * Due to alias, lumen 4 
was not measured for setup 1and 2. 
 

TABLE II 
IN VIVO:  Reproducibility 

 
Table II. %SD is compared between the two techniques. 

    Flow 
Setup 

Lume
n 
 

 Area 
mm^2 

Flow 
ml/min 

Diameter 
mm 

1 mean 
% SD 

50.6 
1.48 

339.1 
1.10 

8.03 
0.84 

2 mean 
% SD 

49.6 
3.02 

343.0 
1.95 

7.95 
1.51 

       1* 

3 mean 
% SD 

49.6 
1.51 

359.7 
3.10 

7.95 
0.75 

      
1 mean 

% SD 
52.1 
2.24 

257.1 
1.41 

8.19 
1.02 

2 mean 
% SD 

51.9 
1.50 

256.2 
3.71 

8.18 
0.91 

2* 

3 mean 
% SD 

49.4 
1.41 

271.1 
1.87 

7.96 
0.48 

      
1 mean 

% SD 
47.0 
3.01 

105.4 
2.92 

7.77 
1.37 

2 Mean 
% SD 

48.2 
2.75 

101.2 
6.60 

7.87 
1.46 

3 

3 mean 
% SD 

48.4 
1.65 

124.6 
2.41 

7.88 
0.87 

 4 mean 
% SD 

27.4 
3.72 

147.8 
3.74 

5.96 
1.73 

Lumen # of pixel 
ml/min 

 Manual 
% SD 

Automated 
% SD 

Carotid 
Artery 

 

Area  
 

Mean flow 

R 
L 
 

9.9 
9.6 

30.6 

2.0 
2.4 

          5.6 
 

Jugular 
Vein 

 

Area 
 

Mean flow 

R 
L 
 

18.5 
7.8 

56.7 

4.0 
4.2 

12.3 
 

Vertebral 
Artery 

 

Area 
 

Mean flow 

R 
L 
 

9.2 
8.3 

23.4 

1.8 
2.0 
5.7 

 
CSF Area 

Osc. Flow 
30.3 
1.3 

7.4 
0.6 
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     The average area and diameter for all in vitro flow 
setup (lumen 1, 2, and 3) are 49.63mm2 and 7.98mm 
with average %SD of 2.05% and 1.01%, respectively.  
Actual dimensions are 50.27mm2 and 8.00mm, 
respectively.  Lumen 4 has average area and diameter 
of 27.4mm2 and 5.96mm with average %SD of 3.72% 
and 1.73% where actual area and diameter are 28.2mm2 
and 6.00mm, respectively.  Flow rate setup is only 
available for flow setup 1.  The average flow rate 
and %SD are 354.4ml/min and 2.25%, respectively, 
where actual setup is 366ml/min. 
     Table II summarizes the user-variability measured 
with manual and automated method.  Improvement 
factors (Manual %SD / Automated %SD) which 
averaged for all vessels’ areas and flows are 4.11 and 
4.73, respectively.  (CSF oscillatory flow was not 
included for this calculation.) 
 

IV. DISCUSSION 

 
    Validation of the accuracy of the automated method 
was performed only on a phantom study since there is 
no other method that can provide the true lumen size 
measurement in vivo.  The errors obtained with the 
automated method for different lumen sizes ranged 
from 0.37% to 2.88%.  This compared favorably with 
larger errors ranging from 6.50% to 10.88% that were 
found by other sites using the same phantom in a multi-
center trial. 
 The reproducibility of the automated method was 
evaluated using MRI data from subjects.  The 
reproducibility of lumen size measurements of in vivo 
study improved significantly.  On the average, the 
automated method produced results that were more 
reproducible by a factor of 4.11 for area and 4.73 for 
flow rate.  Burkart (7) has compared user-variability 
between magnitude threshold method and manual 
method by measuring the flow of the portal vein.  Their 
result shows that user-variability of magnitude 
threshold method was reduced by a factor of only 2.69 
over manual method.   
     Visual determination of the lumen border is 
influenced by the noise levels and window settings of 
the viewed image.  The temporally correlated method 
utilizes information from multiple images and therefore 
information with higher SNR is available for 
determining the lumen.  The location of a pixel that is 
used as a “reference waveform” does not affect the 
results significantly.  
     In summary, the automated segmentation based on 
temporal correlation provides accurate and reproducible 
quantitation of the lumen size and flow rate for non-
steady flow. 
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